Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting ~1% of the Australian population aged over 60. Like many common diseases, risk of Parkinson’s can be attributed to a combination of genetic and environmental factors. A handful of genes associated with rare familial forms of parkisonism have been identified, but like ALS, the great majority of cases do not harbour mutations in those genes. Likewise, a number of environmental factors have been associated either increased (e.g. pesticides, heavy metals) or decreased (e.g. smoking, coffee) risk of the disease, but the underlying molecular pathways through which these exposures influence risk are poorly understood. A better understanding of both genetics and environmental factors is essential if we are to improve diagnosis, prognosis and treatment for this devastating condition. We have partnered with Parkinson’s Queensland (Prof. George Mellick) and clinician researchers in Sydney (Prof. Simon Lewis) and New Zealand (Prof. Martin Kennedy) to undertake whole genome genetic and epigenetic analyses of Parkinson’s disease patients and age-matched controls, and we have established collaborations internationally for large-scale meta-analyses of genetic data. Our goals are to identify novel genes and molecular pathways, and to improve understanding of epigenetic changes arising from PD-associated environmental exposures such as smoking and pesticides.

Project members

Key Contacts

Professor Naomi Wray

Director, Centre for Population and Disease Genomics
Joint Appointment
Queensland Brain Institute
NHMRC Leadership Fellow - GL
Institute for Molecular Bioscience

Professor Peter Visscher

ARC Laureate Fellow - GL
Institute for Molecular Bioscience