IMB Global Challenges PhD - Projects List 2023 (Centre for Chronic Diseases)
Please see below for a list IMB's Global Challenges PhD projects. Those marked with an asterisk (*) are eligible for the Global Challenges Scholarship. For more information about the Global Challenges Scholarship, please see here:
Gender matters: Heart disease risk in women
Principal Advisor: Dr Sonia Shah (IMB)
Associate Advisor: Prof Gita Mishra (School of Public Health)
The 2019 Women and Heart Disease forum highlighted clear disparities in CVD outcomes between males and females. The report (Arnott et al 2019 Heart, Lung and Circulation), highlighted a need to increase our understanding of sex-specific pathophysiology driving susceptibility to common diseases, and identification of sex-specific risk factors to improve early detection and prevention of CVD in women. Until recently, sex-specific research was underpowered and most studies on heart disease included a much smaller number of female participants. But this is beginning to change with the availability of large biobank data.
This project will require statistical analysis of very large datasets with health records linked to genomic data to address these gaps in our understanding of heart disease in women. This includes data from the UK Biobank cohort in ~500,000 individuals (54% women) and data from the Australian Women’s Longitudinal Study (led by Prof Gita Mishra), a study looking at the factors contributing to the health and wellbeing of over 57,000 Australian women, and is the largest, longest-running project of its kind ever conducted in Australia.
This project will lead to a better understanding of sex-specific risk factors for CVD, which will inform better CVD prevention strategies in women.
Identifying vascular cell types and genes involved in human skeletal disease
Principal Advisor: Dr John Kemp (IMB)
Associate Advisors: Anne Lagendijk (IMB) and Dr Dylan Bergen (University of Bristol, UK)
Genetic association studies offer a means of identifying drug targets for disease intervention. However, few of the causal genes underlying skeletal disease associations have been identified and functionally validated in vivo. Our team has developed a workflow that integrates genetic association study results, single-cell transcriptomics, and phenotype data from knockout animal models to identify disease-causing genes and predict the cellular context through which they function. Unpublished results from our team suggest that vascular cell-specific genes have underappreciated roles in bone homeostasis. This PhD project aims to better understand how vascular genes contribute to the development of skeletal disease.
Research objectives:
(i) To define a single-cell RNA sequencing census of different cell types, present in the bone microenvironment of zebrafish, and contrast the transcriptomic profiles of different bone cells across mice, and humans.
(ii) Investigate whether profiles of different bone cell types are conserved across species, and whether vascular cell types are also enriched for skeletal disease associated genes.
(iii) Identify candidate vascular cell-specific genes (and drug targets) and validate their predicted roles in skeletal disease using zebrafish knockout models and live imaging to monitor vessel network formation and function.
Role of caveolae in cancer as a chronic disease
Principal Advisor: Prof. Rob Parton (IMB)
Associate Advisors: Alan Rowan, (AIBN) and Alpha Yap, (IMB)
Caveolae, abundant cell surface organelles, have been extensively linked to chronic disease. Changes in the major proteins of caveolae have been linked to numerous cancers including breast cancer, pancreatic cancer, melanoma, thyroid cancer, gastric cancer, and colorectal cancer. In addition, caveolar proteins are dramatically upregulated in cells treated with chemo-therapeutics and their loss sensitises cells to toxic agents. Understanding the role of caveolae in cancer susceptibility and progression (to invasion and metastasis) requires a complete understanding of how caveolae, both in the cancer cell and the cancer cell environment, respond to intrinsic risk factors and to external stress.
This project will build on our findings that caveolae can sense mechanical and environmental stress. It will test the hypothesis that caveolae can protect cells against mechanical forces by activating signalling pathways from the cell surface to the nucleus and that loss of this pathway can promote DNA damage leading to cancer progression. It will employ novel systems in which defined mechanical stimuli can be combined with genetically-modified cells and state-of-the-art microscopic methods. This will define the role of caveolae in both the host cells, and in the neighbouring cellular environment, and determine the contribution of caveolar dysfunction to cancer progression.
Understanding and preventing relapse of Inflammatory Bowel Disease.
Principal Advisor: Prof. Alpha Yap (IMB)
Associate Advisor: Dr. Julie Davies (Mater UQ)
The inflammatory bowel diseases, Crohn’s Disease and Ulcerative Colitis, are chronic diseases that display patterns of relapse and remission which contribute significantly to the burden that they carry. A key to reducing this burden, both for patients and the community, lies in being able to prolong how long patients stay in remission from active disease. Common approaches to maintain remission include immunosuppression and cytokine inhibitors, but these carry significant side effects and often eventually fail. In this project, we aim to investigate alternative ways to understand the mechanisms that lead to relapse, as a foundation to design new therapies. Specifically, our recent discoveries indicate that the mechanical properties of the bowel epithelium may play a critical role in relapse. Increased mechanical tension prevents the bowel epithelium from eliminating injured cells, thus increasing their capacity to provoke inflammation and disease relapse. We will pursue this by developing new clinically-applicable diagnostic tools to evaluate tissue mechanics and test how correcting mechanical properties can prevent disease relapse. Our goal is to support remission through approaches that can complement currently-available therapies.
Investigating the molecular basis of motor neurone disease
Principal Advisor: Dr Fleur Garton (IMB)
Associate Advisors: Adam Walker (QBI) and Allan McRae (IMB)
Motor neuron disease (MND) is a devastating disease for those affected and their family. It is an adult-onset, neurodegenerative disorder that progressively leads to paralysis and death. For most individuals with MND, diagnosis comes as a surprise, with no family history. The estimated genetic contribution to disease is significant and genome-wide association studies (GWAS) are now identifying these. The causal gene/mechanism is not known and further analyses must be carried out.
This project aims to identify molecular mechanisms contributing to MND to help support the path to translation. It will harness the in-house, Sporadic ALS Australia Systems Genomics Consortium (SALSA-SGC) platform. The current cohort, N~400 cases and N~200 controls is larger than existing datasets and has a rich set of matched data both genomic and clinical. Samples will be run for ‘omics analyses including DNA methylation and RNA-seq. Profiling expression with genomic and clinical data is expected to help identify lead disease mechanisms. Any new finding can be modelled in-vitro or in-vivo using cell or animal models. There is no effective treatment for MND and this project will help drive progress in unlocking molecular variations that contribute to the disease.
The physiological role and therapeutic potential of gut peptides modulating appetite
Principal Advisor: A/Prof. Markus Muttenthaler
Associate Advisor: Dr Sebastian Furness (SBMS, UQ)
The advent of highly-processed, calorie-rich foods in combination with increasingly sedentary lifestyles has seen a rapid rise in overweight and obesity. 60–80% of populations in developed countries are overweight or obese, and over three million deaths each year are attributed to a high body mass index. Obesity is also a risk factor for diabetes, hypertension, cardiovascular disease, kidney disease, and most kinds of cancer. This has a clear impact on life expectancy, with predictions that this generation will be the first to have a shorter life expectancy than the last. Despite this enormous socioeconomic impact, treatment options are limited.
Our research groups are interested in the role of the gut peptides GLP-1 and CCK in regulating appetite and satiety. A subset of GLP-1 mimetics are already successful treatments for obesity, however, compliance is low as they are injectables. The project will focus on the development of orally active mimetics. The project will also develop molecular probes to facilitate the study of the GLP1 and CCK1 receptors in the context of appetite regulation across the gut-brain axis.
The candidate should have a degree in chemistry, biochemistry or pharmacology, good hands-on laboratory skills, and a desire to drive the project. The candidate will be involved in solid phase peptide synthesis, medicinal chemistry, mass spectrometry, structure-activity relationship studies, cell culture, gut stability assays, cell signalling and receptor pharmacology.
The therapeutic potential of the trefoil factor family in chronic gastrointestinal disorders.
Principal Advisor: A/Prof. Markus Muttenthaler
Associate Advisor: Prof Alpha Yap (IMB)
Inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS) affect 10–15% of the Western population, having a substantial socio-economic impact on our society. The aetiology of these disorders remains unclear, and treatments focus primarily on symptoms rather than the underlying causes.
Our research group is pursuing innovative therapeutic strategies targeting gastrointestinal wound healing and protection to reduce and prevent such chronic gastrointestinal disorders. This project focuses on the trefoil factor family, an intriguing class of endogenous gut peptides and key regulators for gastrointestinal homeostasis and protection. The project will focus on the chemical synthesis of the individual members and molecular probe and therapeutic lead development to advance our understanding of their mechanism of action and explore the therapeutic potential of these peptides for treating or preventing gastrointestinal disorders.
The candidate should have a degree in chemistry, biochemistry, pharmacology or cell biology, good hands-on laboratory skills, and strong ambition and work ethics. The candidate will be involved in solid phase peptide synthesis, medicinal chemistry, mass spectrometry, structure-activity relationship studies, NMR, cell culture, wound healing assays, gut stability assays, cell signalling and receptor pharmacology.
Targeting macrophage-mediated chronic inflammation
Principal Advisor: Prof Matt Sweet (IMB)
Associate Advisor: Prof Michael Yu (AIBN)
Macrophages are key cellular mediators of innate immunity. These danger-sensing cells are present in all tissues of the body, providing frontline defence against infection and initiating, coordinating, and resolving inflammation to maintain homeostasis. Dysregulated macrophage activation drives pathology in numerous inflammation-associated chronic diseases, for example chronic liver disease, inflammatory bowel disease, rheumatoid arthritis, atherosclerosis and cancers. Emerging technologies, including nanoparticle-mediated delivery of mRNAs and small molecules, provide exciting new opportunities to target otherwise "undruggable” intracellular molecules and pathways within macrophages. Such approaches hold great potential for manipulating macrophage functions to suppress inflammation-mediated chronic disease. This project will characterize and target specific pro-inflammatory signalling pathways in macrophages as proof-of-concept for intervention in chronic inflammatory diseases.
Variants of neuronal ion channels that give rise to neurodevelopmental disorders.
Principal Advisor: Angelo Keramidas (IMB)
Associate Advisors: Prof Irina Vetter (IMB) and A/Prof Victor Anggono (QBI).
Genetic variants of ion channels that mediate neuronal electrical communication (such as voltage-gated sodium channels and glutamate-gated synaptic receptors) can cause neurological disorders that include epilepsy, ataxia, neurodevelopmental delay and autism spectrum disorder. Understanding the molecular level deficits of an ion channel caused by a variant is essential to accurate molecular diagnosis and tailoring treatment options that correct variant-specific functional deficits. This personalised approach increases the efficacy of treatment, minimises side effects.
This project focussed on variants of voltage-gated sodium channels that are key generators of neuronal action potentials, and synaptic receptors such as GABA- and glutamate-gated ion channel receptors that mediate neuronal inhibition and excitation, respectively.
The project will combine high-resolution and high-throughput electrophysiology and pharmacology as well as ion channel protein synthesis and forward trafficking to understand the pathology of ion channel variants. Standard and new treatment options will be tested against each variant to optimise treatment that is tailored to each variant.
Together these approaches will enhance our understanding of the structure and function of neuronal ion channels and improve our understanding neurological disease mechanisms and treatments.
This project will involve a close collaboration between two groups across two institutes at UQ (IMB and QBI), offering students the opportunity for cross-disciplinary training in neuroscience research with the potential for therapeutic applications for patients.